Get started
cITMre
The cITMre library—Colombian Index Tool (Market Rate Exchange)—responds to the researcher's economics and financial sciences needs to use the colombian Representative Market Rate Exchange. This package presents a practical solution for downloading the RMRE database.
The tool allows us to obtain:
- Download the data series in daily, monthly, quarterly, and half-yearly frequencies.
- Can split the time series through start and end function
- Can transform the data set in log returns or level
- Can make a Dynamic graph through Plotly, or if is your preference can make a normal plot.
Motivation
Obtaining information from the Colombian RMRE is relatively straightforward; the search in the
official state database Portal de Datos Abiertos
Note: The information discounts weekends and holidays; the function approximates the nearest trade date.
Parameters
Parameter | Description | Default Value |
---|---|---|
start_date | An initial date in the "YYYY-MM-DD" type; by default, the series starts on the first date of the resource. | First day of the resource |
end_date | A final date in the "YYYY-MM-DD" form; by default, it shows the updated last date on the resource. | Updated last date on the resource |
log_return | Show the log return of the RMRE (Representative Market Rate Exchange) dataset; if it is TRUE, show the log return dataset; if it is FALSE, show the level dataset; in default, show the level dataset. | FALSE |
plot_data | Show a Plotly linear graph data set; by default, the argument is false, and the graph is built in the Viewer option. You can use the basic plot if the user does not use the plot_data option. | FALSE |
frequency | Show frequencies for the data set in daily (365), month (12), quarter (4), and half-year (2); in default, the dataset is the daily frequency. | Daily (365) |
type | It works only with 12, 4, 2 frequencies, showing the dataset using the last date ("last_date") or doing a mean ("mean") in the frequency series. By default, the type is "last_date". | "last_date" by default |
Applied Example
If you want to use citmre
, perform the package installation process using pip install
cITMre=0.1.0
and load the from citmre.citmre_fun import rmre_data
.
Once the package is installed, use the rmre_data()
function to obtain the total RMRE series
(the Colombian state has RMRE data since 1991-12-02); the data loaded is an XTS series.
from citmre.citmre_fun import rmre_data
import pandas as pd
data = rmre_data(plot_data= True)
data.head()
#>Date
#>1991-12-02 643.42
#>1991-12-03 639.22
#>1991-12-04 635.70
#>1991-12-05 631.51
#>1991-12-06 627.16
In economic or financial research, it is not necessary to take the whole time series; use
start_date
and end_date
under the format "YYYYY-MM_DD" to obtain a specific start and
end date. For example, we want to get the RMRE from March 18, 2005, to June 26, 2019, in an
object called data
simplifying function result.
data = rmre_data(start_date = "2005-03-18", end_date = "2019-06-26", plot_data= True)
data.head()
#>Date
#>2005-03-18 2374.46
#>2005-03-22 2371.43
#>2005-03-23 2361.78
#>2005-03-28 2382.30
#>2005-03-29 2397.25
In some research, the historical volatility is expected to be analysed for advanced econometric
or financial studies. It is possible to use the function log_return=TRUE
to change the series
to log return based on the formula: $ lr(RMRE) = ln(\frac{Present~value}{Past~Value}) $, in Default the
series is presented in level data.
data_log = rmre_data(start_date = "2005-03-18", end_date = "2019-06-26", log_return = True, plot_data= True)
print(data_log.head())
print(data_log.tail())
#>Date
#>2005-03-22 -0.001277
#>2005-03-23 -0.004078
#>2005-03-28 0.008651
#>2005-03-29 0.006256
#>2005-03-30 -0.001641
#>Name: log_return, dtype: float64
#>Date
#>2019-06-19 -0.006609
#>2019-06-20 -0.004934
#>2019-06-21 -0.014541
#>2019-06-25 -0.003391
#>2019-06-26 -0.001261
#>Name: log_return, dtype: float64
On some occasions, economic or financial variables do not necessarily use the same time-frequency
of the daily series as in the RMRE. Colombia's GDP (Gross Domestic Product) is quarterly; therefore,
the RMRE daily series must be transformed into a quarterly one. The frequency
function displays
the RMRE series in monthly (12), quarterly (4) and half-yearly (2) series. By default, the daily
series will be (365). Frequencies can also be transformed to log_return.
The type
function can approximate the series on mean or last date data. When type = "mean" is used,
the series gets the average value of the series in frequency. If
type = "last_date" is used, the
last data of the series is used in frequency. By default, the type
is set to last_date
.
### Monthly RMRE
data = rmre_data(start_date = "2005-03-18", end_date = "2019-06-26", plot_data= True, frequency = 12)
print(data.head())
print(data.tail())
#>Date
#>2005-03-18 2374.46
#>2005-03-22 2371.43
#>2005-03-23 2361.78
#>2005-03-28 2382.30
#>2005-03-29 2397.25
#>Name: rmre, dtype: float64
#>Date
#>2019-06-19 3264.98
#>2019-06-20 3248.91
#>2019-06-21 3202.01
#>2019-06-25 3191.17
#>2019-06-26 3187.15
#>Name: rmre, dtype: float64
### Quarterly RMRE
data_q = rmre_data(start_date = "2005-03-18", end_date = "2019-06-26", plot_data= True, frequency = 4)
print(data_q.head())
print(data_q.tail())
#>Quarter
#>2005Q1 2376.48
#>2005Q2 2331.81
#>2005Q3 2289.61
#>2005Q4 2282.35
#>2006Q1 2289.98
#>Name: rmre, dtype: float64
#>Quarter
#>2018Q2 2945.09
#>2018Q3 2989.58
#>2018Q4 3275.01
#>2019Q1 3190.94
#>2019Q2 3187.15
#>Name: rmre, dtype: float64
### Half-year RMRE
data_s = rmre_data(start_date = "2005-03-18", end_date = "2019-06-26", plot_data= True, frequency = 2)
print(data_s.head())
print(data_s.tail())
#>Semester
#>2005-1S 2331.81
#>2005-2S 2282.35
#>2006-1S 2633.12
#>2006-2S 2233.31
#>2007-1S 1958.09
#>Name: rmre, dtype: float64
#>Semester
#>2017-1S 3038.26
#>2017-2S 2971.63
#>2018-1S 2945.09
#>2018-2S 3275.01
#>2019-1S 3187.15
#>Name: rmre, dtype: float64
Final considerations
This tool can be used for time series analysis with an xts class condition; therefore, the user can transform the series to ts if any tool conflicts with an xts series.
References
Source: Portal de Datos Abiertos